On Two-Dimensional Indexability and Optimal Range Search Indexing

(Extended Abstract)

Lars Arge* Vasilis Samoladas† Jeffrey Scott Vitter‡

Abstract

In this paper we settle several longstanding open problems in theory of indexability and external orthogonal range searching. In the first part of the paper, we apply the theory of indexability to the problem of two-dimensional range searching. We show that the special case of 3-sided querying can be solved with constant redundancy and access overhead. From this, we derive indexing schemes for general 4-sided range queries that exhibit an optimal tradeoff between redundancy and access overhead.

In the second part of the paper, we develop dynamic external memory data structures for the two query types. Our structure for 3-sided queries occupies $O(N/B)$ disk blocks, and it supports insertions and deletions in $O(\log_B N)$ I/Os and queries in $O(\log_B N + T/B)$ I/Os, where B is the disk block size, N is the number of points, and T is the query output size. These bounds are optimal. Our structure for general (4-sided) range searching occupies $O((N/B)(\log(N/B))/\log \log_B N)$ disk blocks and answers queries in $O(\log_B N + T/B)$ I/Os, which are optimal. It also supports updates in $O((\log_B N)(\log(N/B))/\log \log_B N)$ I/Os.

1 Introduction

There has recently been much effort toward developing worst-case I/O-efficient external memory data structures for range searching in two dimensions [1, 2, 4, 8, 12, 13, 20, 26, 28, 29]. In their pioneering work, Kannan et al. [13] showed that the problem of indexing in new data models (such as constraint, temporal, and object models), can be reduced to special cases of two-dimensional indexing. (Refer to Figure 1.) In particular they identified the 3-sided range searching problem (Figure 1(c)) to be of major importance.

In the first part of this paper (Section 2), we apply the theory of indexability [10] to two-dimensional range searching problems. In indexability theory the focus is on bounding the number of disk blocks containing the answers to a query (access overhead) given a bound on the number of blocks used to store the data points (redundancy). The search cost of computing which blocks to access is ignored. We generalize the results in [26, 14] and show a lower bound on redundancy for a given access overhead for the general 4-sided problem. We then show that this bound is tight by constructing an indexing scheme with a matching tradeoff between redundancy and access overhead. The indexing scheme is based upon an indexing scheme for the 3-sided range searching problem with constant redundancy and access overhead.

In the second part of the paper, we develop optimal dynamic external data structures for 3-sided range searching (Section 3) and 4-sided range searching (Section 4). (The update time is not provably optimal in the 4-sided case.) Unlike in indexability theory, we do not ignore the search cost when designing external data structures. Our dynamic data structure for 3-sided range searching is an optimal external version of the priority search tree [16] based upon weight-balanced B-trees [2].

Throughout the paper we use capital letters to denote parameter sizes in units of data points:

\[N = \text{size of the data set}; \]
\[B = \text{disk block size}; \]
\[T = \text{size of the query output}. \]
For notational simplicity, we define
\[n = \frac{N}{B} \quad \text{and} \quad t = \frac{T}{B} \]
to be the data set size and query output size in units of blocks rather than points. An I/O operation (or simply I/O) is defined as the transfer of a block of data between internal and external memory.

Indexability: Background and outline of results
The theory of indexability was formalized by Hellerstein, Koutsoupias, and Papadimitriou [10]. As mentioned it studies an abstraction of an indexing problem where search cost is omitted. An instance of a problem is described by a workload \(W \), which is a simple hypergraph \((I, Q)\), where \(I \) is the set of instances, and \(Q \) is a set of subsets of \(I \). The elements of \(Q \) are called queries.

For a given workload \(W = (I, Q) \), and for a parameter \(B \geq 2 \) called the block size, we can construct an indexing scheme \(S \) as a \(B \)-regular hypergraph \((I, B)\), where each element of \(B \) is a \(B \)-subset of \(I \), and is called a block. We require that \(I = \cup B \). An indexing scheme \(S \) can be thought of as a placement of the instances of \(I \) on disk pages, possibly with redundancy. It can thus be seen as a solution to a data structure problem, assuming that searching for the appropriate blocks incurs no cost.

An indexing scheme is qualified by two parameters: its redundancy \(r \) and its access overhead \(A \). The redundancy is a measure of space efficiency and is defined as \(r = \frac{B|B|}{|I|} \). The access overhead \(A \) is defined as the least number such that every query \(q \in Q \) is covered by at most \(A\frac{|q|}{B} \) blocks of \(S \), where \(|q|\) denotes the number of points that satisfy query \(q \). The reader is referred to [10, 24] for a more detailed presentation.

Koutsoupias and Taylor [14] applied indexability to two-dimensional range searching and showed that a particular workload, the Fibonacci workload, seems to be worst-case for two-dimensional range queries. Using this result, they showed logarithmic upper and lower bounds on the redundancy for range search indexability.

In Section 2, we extend the previous results on the Fibonacci workload by computing the exact worst-case indexability trade-off between redundancy and access overhead. We demonstrate that the lower bound is tight by exhibiting a matching indexing scheme.

External range search data structures:
Background and outline of results
Research on two-dimensional external range searching has traditionally been concerned with the general 4-sided problem. Many external data structures such as grid files [17], various quad-trees [22, 23], z-orders [18] and other space filling curves, k-d-B-trees [21], hB-trees [15], and various R-trees [9, 25] have been proposed. Often these structures are the data structures of choice in applications, because they are relatively simple, require linear space, and in practice perform well most of the time. However, they all have highly suboptimal worst-case performance, and although most are dynamic structures, their performance deteriorates after repeated updates. The relevant literature is huge and well-established, and is recently surveyed in [7].

Some progress has recently been made on the construction of external two-dimensional range searching structures with provably good performance. The important subproblem of dynamic interval management is considered in [13, 2]. A key component of the problem is how to answer stabbing queries. Given a set of intervals, a stabbing query with query point \(q \) asks for all the intervals that contain \(q \). A stabbing query with query \(q \) is equivalent to a diagonal corner query (a special case of 2-sided two-dimensional range searching) in which the corner of the query is located at \((q, q)\) on the diagonal line \(x = y \), (See Figure 1(a)). Arge and Vitter [2] developed an optimal dynamic structure for the diagonal corner query problem. The structure uses \(O(n) \) disk blocks to store \(N \) points, and supports queries and updates in \(O(\log B N + t) \) and \(O(\log B N) \) I/Os, respectively.

A number of elegant internal memory solutions exist for other special cases of two-dimensional range searching. The priority search tree [16] for example can be used to answer 3-sided range queries in optimal query and update time using linear space. A number of attempts have been made to externalize priority search trees, including [4, 12, 13, 20], but all previous attempts have been nonoptimal. The structure in [12] uses optimal space, but answers queries in \(O(\log B N + t) \) I/Os. The structure of [4] also uses optimal space, but answers queries in \(O(\log B N + T) \) I/Os. In both these papers, a number of nonoptimal dynamic versions of the structures are developed.
The structure developed in [13] uses linear space but answers queries in \(O(\log B N + t - \log B)\) I/Os. Ramaswamy and Subramanian [20] developed a technique called path chaining for transforming an efficient internal memory data structure into an I/O-efficient one. Use of this technique on the priority search tree results in a structure that can be used to answer 3-sided queries in the optimal \(O(\log B N + t)\) I/Os but using nonoptimal \(O(n(\log B)\log \log B)\) disk blocks of space. The structure can be updated in \(O((\log N)\log B)\) I/Os. Further modifications led to the dynamic structure called the \(p\)-range tree [26]. For 3-sided queries, it uses linear space, answers queries in \(O(\log B N + t + IL_2^*(B))\) I/Os, and supports updates in \(O(\log B N + (\log B N^2)^2/B)\) I/Os amortized. (The function \(IL_2^*\) is the very slowly growing iterated \(\log^*\) function, that is, the number of times that the \(\log\) function must be applied to get below 2.)

The \(p\)-range tree can be extended to answer general 4-sided queries in the same query bound using \(O(n\log n)\) disk blocks of space; it supports updates in \(O((\log N)(\log B N + (\log B N^2)^2/B))\) I/Os amortized. Ramaswamy and Subramanian also provide a static structure with the same query bound using \(O(n(\log n)/\log \log B N)\) disk space. They prove for a fairly general model that this space bound is optimal for any data structure that can answer queries in \(O((\log B N)^{\log(1)} + t)\) I/Os.

In Section 3, we present an optimal dynamic data structure for 3-sided range searching that occupies \(O(n)\) disk blocks, performs queries in \(O(\log B N + t)\) I/Os, and does updates in \(O(\log B N)\) I/Os. Part of the structure uses the indexing scheme developed in the first part of the paper, and thus we demonstrate the suitability of indexability as a tool in the design of data structures, in addition to its application in the study of lower bounds.

In Section 4, we use our 3-sided structure to construct a dynamic structure for 4-sided queries that uses \(O(n(\log n)/\log \log B N)\) disk blocks of space and answers queries in \(O(\log B N + t)\) I/Os, which are optimal. Updates can be performed in \(O((\log B N)/(\log n)/\log \log B N)\) I/Os.

\section{Indexability of two-dimensional workloads}

In this section we study the 3-sided and 4-sided range searching problems within the indexability framework. In Section 2.1 we provide a lower bound on the tradeoff between the redundancy \(r\) and the access overhead \(A\) for the 4-sided problem. We show the bound to be tight in Section 2.2 by designing an indexing scheme with the same tradeoff.

\subsection{Lower bound for general range searching}

Samoladas and Miranker [24] developed a general technique for computing lower bounds for arbitrary workloads. In this section we combine their technique with the results of [14] to obtain a lower bound on the trade-off between the redundancy \(r\) and the access overhead \(A\) for the so-called Fibonacci workload.

We begin with a brief description of the Fibonacci workload: we refer the reader to [14] for a thorough presentation. Let \(N = f_k\) be the \(k\)th Fibonacci number. The Fibonacci lattice \(F_N\) is the set of two-dimensional points defined by:

\[F_N = \{(i, if_k - 1 \mod N) \mid i = 0, 1, \ldots, n - 1\},\]

for \(N = f_k\). The Fibonacci workload is defined by taking the Fibonacci lattice as the set of instances \(I\), and \(Q\) consists of queries in the form of orthogonal rectangles.

We will only use the following property of the Fibonacci lattice [14]:

\begin{proposition}
For the Fibonacci lattice \(F_N\) of \(N\) points and for \(\ell \geq 0\), any rectangle with area \(BN\) contains \([\ell/c_1]\) and \([\ell/c_2]\) points, where \(c_1 \approx 1.9\) and \(c_2 \approx 0.45\).
\end{proposition}

In [24] the following theorem is proved:

\begin{thm}[Redundancy Theorem]
Let \(S\) be an indexing scheme with access overhead \(A\), and let \(q_1, q_2, \ldots, q_M\) be queries, such that for every \(i\) in the range \(1 \leq i \leq M\), the following conditions hold:

\[|q_i| \geq B,\]
\[|q_i \cap q_j| \leq \frac{B}{2(\varepsilon A)^2},\]

for all \(j \neq i\), \(1 \leq i, j \leq M\). The redundancy \(r\) satisfies

\[r \geq \frac{\varepsilon - 2 + 1}{2\varepsilon B N} \sum_{i=1}^{M} |q_i|,\]

where \(2 < \varepsilon < B/A\) is any real number such that \(B/\varepsilon A\) is an integer.
\end{thm}

Let us apply this theorem to the Fibonacci workload. The first step is to design a set \(Q\) of queries. Intuitively, we should consider queries of output size \(B\), as these seem to be the hardest. To be slightly more general, however, we consider queries of size at least \(kB\), for arbitrary integer \(k \geq 1\). In this manner, we obtain a more general result, depending upon \(k\).

Our queries are rectangles of dimension \(c^i \times a/c^i\), for appropriate integers \(i\). (The parameter \(c\) will be determined later.) The area of each rectangle is \(a\), which we set to \(c_1 k BN\). By Proposition 1, each such rectangle contains at least \(kB\) points. For each choice of \(i\), we partition the Fibonacci lattice into non-overlapping rectangles of dimension \(c^i \times a/c^i\), in a tiling fashion. All these rectangles define our query set \(Q\).
Because no rectangle can have a side longer than \(N \), we must constrain the integer \(i \) to satisfy \(c^i \leq N \) and \(a/c^i \leq N \), which puts \(i \) roughly in the range between \(\log_c c_1 kB \) and \(\log_c N \); that is, the rectangles have approximately \(\log_c (N/c_1 kB) \) distinct aspect ratios. Since we cover the whole set of points for each choice of \(i \), we obtain a total of \((N/kB) \log_c (N/c_1 kB) \) queries, each of size \(kB \). It follows from Theorem 1 that

\[
 r \geq \frac{\varepsilon - 2}{2\varepsilon} \log_c N \frac{2}{k c_1} = \Omega \left(\frac{\log N}{c_1 k} \right).
\]

We determine parameter \(c \) using the second condition of Theorem 1, which states that no two queries can intersect by more than \(B/2(\varepsilon A)^2 \) points. We observe that rectangles of the same aspect ratio do not intersect, and rectangles of different aspect ratios have intersections of area at most \(a/c \). From Proposition 1 it suffices to have

\[
 \left[\frac{a/c}{c^2 N} \right] \leq \frac{B}{2(\varepsilon A)^2} c.
\]

Under the restriction that \(B \geq 4(\varepsilon A)^2 \), the value

\[
 c = \frac{4 c_1}{c_2} k(\varepsilon A)^2
\]

satisfies the constraint. By choosing \(k = 1 \) we get the following theorem:

Theorem 2 For the Fibonacci workload, the redundancy and the access overhead satisfy the tradeoff \(r = \Omega \left(\frac{\log n}{\log L} \right) \).

More generally, we have the following theorem:

Theorem 3 For the Fibonacci workload, in order to cover queries of \(T = tB \) points with \(L + A/1 \) blocks, the redundancy must satisfy \(r = \Omega \left(\frac{\log n}{\log L + \log A} \right) \).

Proof: Since we have a weaker requirement on the query cost, we only consider queries of size at least \((L/A)B \). Smaller queries are not a problem, because each smaller query is contained within a larger one. By setting \(k = L/A \) in our analysis above, the theorem is proved. \(\square \)

If we set \(L = (\log B N + 1)^{O(1)} \) and \(A = O(1) \), we obtain the lower bound of [26]. For still higher values of \(L \), our lower bound on the required redundancy becomes weaker.

2.2 Indexing schemes for two-dimensional range searching

Proving the lower bound of the previous section to be tight is not trivial. In [14], a method of deriving indexing schemes is given, but its redundancy exceeds the optimal by a factor of \(B^2 \). In fact, in order to construct optimal indexing schemes for 4-sided range-query workloads, we need to construct optimal indexing schemes for 3-sided workloads.

In Section 2.2.1 we show how to construct an indexing scheme for a 3-sided workload, with \(r = O(1) \) and \(A = O(1) \). Interestingly, we were unable to achieve \(A = O(1) \) for the case \(r = 1 \) in which there is no redundancy. Whether this bound is possible is an interesting open problem. In Section 2.2.2 we then consider general 4-sided workloads.

2.2.1 Indexing schemes for 3-sided workloads

Consider a set of \(N \) points \((x_i, y_i)\) in the plane ordered in increasing order of their \(y \)-coordinates and let \(\alpha \geq 2 \) be a constant. We describe a procedure to construct an indexing scheme for the given points.

Initially, we create \(n \) disjoint blocks, \(b_1, b_2, \ldots, b_n \), by partitioning the points based on their \(x \)-order; that is, for each \(i < j \), if \((x_i, y_i) \in b_i \) and \((x_j, y_j) \in b_j \), then \(x_i \leq x_j \). We can associate an \(x \)-range with each block in a natural way, along with a linear ordering of the blocks. (If there are multiple blocks containing a single \(x \)-value, any consistent linear ordering suffices.)

We consider a hypothetical horizontal sweep line, initialized to \(y = -\infty \). We say that a block is active if it contains at least one point above the sweep line. Initially all the blocks \(b_1, b_2, \ldots, b_n \) are active. We maintain the invariant that in each set of \(\alpha \) active blocks that are consecutive in the linear ordering, at least one of the blocks contains at least \(B/\alpha \) points above the sweep line.

We construct the other blocks for our indexing scheme by repeating the following procedure: We raise the sweep line until it hits a new point. If the invariant is violated by \(\alpha \) consecutive active blocks, we form a new block and fill it with the (at most \(B \)) points that are above the sweep line in the \(\alpha \) blocks. We mark the \(\alpha \) blocks as inactive and make the new block active; it replaces the \(\alpha \) blocks in the linear ordering. We do this coalescing operation as many times as necessary until the invariant is restored. The sweep line continues upwards until only one active block remains.

All the blocks constructed in this way form our indexing scheme. We start off with \(n \) active blocks and reduce the number of active blocks by \(\alpha - 1 \) every time we coalesce blocks, so we create a total of at most \(n + n/(\alpha - 1) \) blocks, which gives a redundancy of \(r \leq 1 + 1/(\alpha - 1) \). We can associate an active \(y \)-interval with each block in a natural way: The active \(y \)-interval of block \(b \) is delimited by the \(y \)-coordinate of the point that caused \(b \) to be made active (created) and the \(y \)-coordinate of the point that caused \(b \) to become inactive.

To answer the 3-sided query \(q = (a, b, c) \), we consider blocks whose active \(y \)-intervals include \(c \), that is, the blocks that were active when the sweep line was at \(y = c \). To cover the query, we look at the subset of these blocks.
whose x-ranges intersect the interval $[a, b]$. This subset is necessarily consecutive in the linear ordering. If there are k such blocks, we know from the invariant that at least $\lfloor (k-2)/\alpha \rfloor$ of them will contribute at least B/α points to the query output. Thus a query with output size T satisfies $T \geq \lfloor (k-2)/\alpha \rfloor (B/\alpha)$, from which we get $k \leq \alpha^2 t + \alpha + 1$ and $A \leq \alpha^2 + \alpha + 1$.

Theorem 4 For any 3-sided range searching workload there exists an indexing scheme with redundancy $O(1)$, such that every query of size T is covered with at most $O(t + 1)$ blocks.

2.2.2 Indexing schemes for 4-sided workloads

We now describe an algorithm by which we can create an indexing scheme for any range query workload. Our structure is based upon Chazelle’s filtering technique [5].

We assume without loss of generality that $N = \rho B$, for some integers $\rho \geq 2$ and $k \geq 1$. We first partition our data set of N points into $L_0 = N/\rho B$ sets $S_{0,j}$, for $1 \leq j \leq L_0$, based upon their x-order. Each set $S_{0,j}$ contains ρB points and fits into ρ blocks. We say that the sets form level 0 of our indexing scheme. Then we create $L_1 = L_0/\rho$ sets $S_{1,j}$, for $1 \leq j \leq L_1$, in which each set $S_{1,j}$ is the unique union of ρ consecutive sets of level 0. These sets form level 1. We continue this process recursively, constructing the next level by unioning ρ sets of the current level. We stop when we reach level $k-1$, for which $L_{k-1} = 1$. Each set of level i contains $\rho^{i+1} B$ points; thus, there are $L = N/\rho^{i+1} B$ sets at level i.

The sets $S_{i,j}$ constructed in the above way form a ρ-ary tree with $k = \log_\rho (N/B) = \log_\rho n$ levels, where each non-leaf node is the union of its children. Each node of this tree corresponds naturally to an x-range, and the sets of each level form a partition of the data set.

We organize the points of every set $S_{i,j}$ into blocks, by constructing two indexing schemes on the points of $S_{i,j}$: one that can answer 3-sided queries with the unbounded side to the left, and one that can answer 3-sided queries with the unbounded side to the right. (In the previous section, the unbounded side was upwards.) By the technique of the previous section, these indexing schemes each occupy $O(|S_{i,j}|/B)$ blocks and have access overhead $O(1)$. Overall, we consume $O(n)$ blocks per level, and since we have $\log_\rho n$ levels, the redundancy is

$$r = O \left(\frac{\log n}{\log \rho} \right).$$

To answer a 4-sided query $q = (a,b,c,d)$, we consider the lowest node $S_{i,j}$ (the one with minimum i) whose x-range includes the query x-interval $[a, b]$. There are two cases to consider. If $S_{i,j}$ is a leaf (i.e., at level $i = 0$), we answer the query by loading the ρ blocks of $S_{0,j}$. If $S_{i,j}$ is not a leaf, its ρ children partition q into ρ subqueries q_1, q_2, \ldots, q_ρ, for some $2 \leq \rho \leq k$, as shown in Figure 2.

![Figure 2: The solid lines represent the x-range of set $S_{i,j}$, covering query q shown as the dashed rectangle. The vertical dashed lines represent the c-partition of $S_{i,j}$ into $S_{i-1,j'}, S_{i-1,j'+1}, \ldots, S_{i-1,j'+c-1}$.
](image)

Sub query q_1 is a 3-sided query with the unbounded side to the right, and it can be covered by $O(|q_1|/B + 1)$ blocks of the appropriate child of $S_{i,j}$. Similarly, subquery q_ρ is a 3-sided query with the unbounded side to the right, and it can be covered by $O(|q_\rho|/B + 1)$ blocks of another child of $S_{i,j}$. For each intermediate subquery q_j, for $1 < j < \rho$, we can use either of the indexing schemes for the appropriate child of $S_{i,j}$ to cover q_j in $O(|q_j|/B + 1)$ blocks. The total number of blocks needed to cover query q is $O(\rho + |q|/B)$.

Theorem 5 For any two-dimensional range searching workload and any parameter $\rho \geq 2$, there exists an indexing scheme with redundancy $r = O((\log n)/\log \rho)$ that covers every query of size $T = tB$ with at most $O(\rho + t)$ blocks.

3 Dynamic 3-sided range query data structure

We now turn to the problem of designing a linear space external data structure for answering 3-sided queries. After designing the indexing scheme for 3-sided queries in Section 2.2.1, the only remaining issues are how to efficiently find the $O(t)$ blocks containing the answer to a query and how to update the structure dynamically during an insert or delete. The challenge is to do these operations in $O(\log_B (N + t))$ I/Os and $O(\log_B N)$ I/Os, respectively, in the worst case.

Our solution is an external memory version of a priority search tree [16]. In this structure we use a number of substructures derived from the indexing schemes developed in Section 2.2.1, applied to sets of $O(B^2)$ points each. In the next section we show how to make our $O(B^2)$-sized substructures dynamic with a worst-case optimal update I/O bound. The outer skeleton of our external priority search tree is the so-called weight-balanced B-tree [2], which we review in Section 3.2. In Section 3.3, we describe the external priority search tree and show how to use the weight-balanced properties to do updates in the worst-case optimal I/O bound.
3.1 Dynamic 3-sided queries on $\Theta(B^2)$ points

We know from Corollary 1 that it is possible to build an indexing scheme on $O(B^2)$ points using $O(B)$ disk blocks such that any 3-sided query can be covered by $O(t + 1)$ blocks. Because such an indexing scheme contains only $O(B)$ blocks, we can store the activity-interval (y-interval) and x-range information for all the blocks in $O(1)$ "catalog" blocks. We can then answer a query in $O(t + 1)$ by loading the $O(1)$ catalog blocks into main memory and using the information in them to determine which index blocks to access.

Given the $O(B^2)$ points in sorted x order a naive construction of the $O(B)$ blocks in the indexing scheme using the sweep line process of Section 2.2 will require $O(B^3)$ I/Os. However, the algorithm can be easily modified to use only $O(B)$ I/Os. When we create a block (make it active), we determine the y coordinate at which point fewer than B/α of its points will be above the sweep line, and we insert that y value into a priority queue. The priority queue is used during the sweep line process of Section 2. The point fewer than B/α of its points will be above the sweep line, and we insert that y value into a priority queue. The priority queue is used during the sweep line process of Section 2. We know from Corollary 1 that it is possible to build an indexing scheme on $O(B^2)$ points using $O(B)$ disk blocks such that any 3-sided query can be covered by $O(t + 1)$ blocks. Because such an indexing scheme contains only $O(B)$ blocks, we can store the activity-interval (y-interval) and x-range information for all the blocks in $O(1)$ "catalog" blocks. We can then answer a query in $O(t + 1)$ I/Os simply by loading the $O(1)$ catalog blocks into main memory and using the information in them to determine which index blocks to access.

Given the $O(B^2)$ points in sorted x order a naive construction of the $O(B)$ blocks in the indexing scheme using the sweep line process of Section 2.2 will require $O(B^3)$ I/Os. However, the algorithm can be easily modified to use only $O(B)$ I/Os. When we create a block (make it active), we determine the y coordinate at which point fewer than B/α of its points will be above the sweep line, and we insert that y value into a priority queue. The priority queue is used during the sweep line process of Section 2.2. We know from Corollary 1 that it is possible to build an indexing scheme on $O(B^2)$ points using $O(B)$ disk blocks such that any 3-sided query can be covered by $O(t + 1)$ blocks. Because such an indexing scheme contains only $O(B)$ blocks, we can store the activity-interval (y-interval) and x-range information for all the blocks in $O(1)$ "catalog" blocks. We can then answer a query in $O(t + 1)$ I/Os simply by loading the $O(1)$ catalog blocks into main memory and using the information in them to determine which index blocks to access.

3.2 Weight-balanced B-tree

Arge and Vitter [2] defined weight-balanced B-trees and used them to construct optimal interval trees in external memory. Weight-balanced B-trees are similar to normal B-trees [3, 6] (or rather $B+$ trees or more generally (a, b)-tree [11]) in that all the leaves are on the same level (level 0), and rebalancing is done by splitting and fusing internal nodes. However, they differ in the following important way: Constraints are imposed on the weight of each node, rather than on its number of children. The weight of a leaf is defined as the number of items in it; the weight of an internal node is defined as the sum of the weights of its children. A leaf in a weight-balanced B-tree with branching parameter a and leaf parameter k ($a > 1$, $k > 0$) has weight between k and $2k - 1$, and an internal node on level ℓ (except for the root) has weight between $\frac{k}{2}a^\ell k$ and $2a^\ell k$. A root at level ℓ has weight at most $2a^\ell k$ and has at least one child. It can easily be shown that a weight-balanced tree on N items has height $\log_a (N/k) + \Theta(1)$ and that every internal node has between $a/4$ and $4a$ children. By choosing $a = \Theta(B)$, we get a tree of height $O(\log_B N)$ when stored on disk, each internal node fits into $O(1)$ blocks, and a search can be performed in $O(\log_B N)$ I/Os.

In order to insert a new item into a weight-balanced B-tree, we search down the tree to find the leaf z in which to do the update. We then insert the item into the sorted list of items in z. If z now contains $2k$ items, we split z into two leaves z' and z'', each containing k items, and we insert a reference to z'' in parent(z). After the insertion of the new items, the weight constraint may be violated at some of the nodes on the path from z to the root; that is, the node v_ℓ on level ℓ may have weight $2a^\ell k$. In order to rebalance the tree we split all such heavy nodes, starting with the nodes on the lowest level and working toward the root. The node v_ℓ is split into v'_ℓ and v''_ℓ such that they both have weight approximately $a^\ell k$. The following lemmas are proved in [2]:

Lemma 2 After a split of a node v_ℓ on level ℓ into two nodes v'_ℓ and v''_ℓ, at least $\ell/2$ inserts have to pass through v'_ℓ (or v''_ℓ) to make it split again. After a new root r in a tree containing N items is created, at least $3N$ inserts have to be done before r splits again.

Lemma 3 A set of $N = nB$ items can be stored in a weight-balanced \tilde{B}-tree with parameters $a = \Theta(B)$ and $k = O(B \log_B N)$ using $O(n)$ disk blocks, so that a search or an insert can be performed in $O(\log_B N)$ I/Os. An insert perform $O(\log_B N)$ split operations.

3.3 External priority search tree

An external priority search tree storing a set of N points in the plane consists of a weight-balanced base tree built upon the x-coordinates of the points, with parameters $a = B/2$ and some k in the range $B/2 \leq k \leq B \log_B N$. Each node therefore corresponds in a natural way to a range of x values, called its x-range.

Each node in the base tree has an associated auxiliary data structure. Each of the N points is stored in the
auxiliary structure of exactly one node or leaf, according to the following rules:

- Each internal node \(v \) stores (at most) \(B^2 \) points in its auxiliary structure—at most \(B \) points corresponding to each of the (at most) \(B \) children of \(v \). For a child \(w \) of \(v \), the set \(Y(w) \) of points contributed to \(v \)'s auxiliary structure is called the \(Y \)-set of \(w \), by which we mean that the points in \(Y(w) \) have the highest \(y \)-coordinates among the points within the \(x \)-range of \(w \) that are not already stored in ancestors of \(v \). See Figure 3.

- Each leaf stores (at most) \(2k \) points in its auxiliary data structure. The points stored in leaf \(z \) consist of the points in \(z \)'s \(x \)-range that are not already stored in ancestors of \(z \).

- If a node or leaf \(v \) has a non-empty auxiliary structure, then its \(Y \)-set (which it contributes to the auxiliary structure of \(\text{parent}(v) \)) contains at least \(B/2 \) points.

We call the auxiliary data structure of an internal node \(v \) its query data structure, and we denote it by \(Q_v \). The query structure \(Q_v \) contains all the \(Y \)-sets of \(v \)'s children—\(\Theta(B^2) \) points in total—and is implemented to support 3-sided queries using the \(O(B) \)-block structure of Lemma 1. The auxiliary data structure of a leaf node \(z \) consists simply of a list \(L_z \) (of blocks) sorted according to their \(y \)-coordinates. Since each of the auxiliary structures uses linear space, the base tree occupies \(O(n) \) blocks, and we get the following lemma:

Lemma 4 An external memory priority search tree on \(N = nB \) points has height \(O(\log_B N) \) and occupies \(O(n) \) disk blocks.

3.3.1 Optimal query performance

The basic procedure for answering a 3-sided query \(q = (a, b, c) \) begins at the root \(r \) of the external priority search tree and proceeds recursively to the appropriate subtrees. All the nodes along the leftmost search path for \(x = a \) and along the rightmost search path for \(x = b \) are visited. Some nodes in the interior region between the two search paths are also visited.

If \(z \) is a leaf node, visiting \(z \) involves accessing the list \(L_z \). If \(z \)'s \(x \)-range intersects one of the query's edges \(x = a \) or \(x = b \), the full list \(L_z \) must be traversed to find the relevant points. If instead the \(x \)-range of \(z \) lies completely within the \(x \)-range of the query, it is possible to access only the relevant part of the list, by taking advantage of the fact that \(L_z \) contains points sorted on the \(y \)-values.

Visiting an internal node \(v \) involves posing query \(q \) to \(v \)'s query structure \(Q_v \). After the relevant points of \(Q_v \) are reported, the search is advanced to some of the children of \(v \). (See Figure 4.) For each child \(w \) of \(v \), the search is advanced to visit \(w \) only if one of the following conditions holds:

1. \(w \) is along the leftmost search path for \(x = a \) or the rightmost search path for \(x = b \), or
2. the entire \(Y \)-set \(Y(w) \) (stored in \(Q_v \)) satisfies the query \(q \).

The correctness of the recursive query procedure follows from the definition of the external priority search tree. If the search procedure visits node \(v \) but not its child \(w \), that means that \(w \) is in the interior region and at least one point \(p \) in \(Y(w) \) does not satisfy the query. Since the \(x \)-range of \(w \) is completely contained in the query's \(x \)-range \([a, b]\), the point \(p \) must be below the query's \(y \)-coordinate \(c \). By definition of \(Y \)-set, all the points in the subtree of \(w \) are no higher than \(p \) and thus cannot satisfy the query.

We can show that a query is performed in the optimal number of I/Os as follows: In every internal node \(v \) visited by the query procedure we spend \(O(1 + T_v/B) \) I/Os, where \(T_v \) is the number of points reported (Lemma 1). There are \(O(\log_B N) \) nodes visited on the direct search paths in the tree to the leftmost leaf for \(a \) and the rightmost leaf for \(b \), and thus the number of I/Os used in these nodes adds up to \(O(\log_B N + t) \). Each remaining internal node \(v \) that is visited is not on the search path, but it is visited because \(\Theta(B) \) points from its \(Y \)-set \(Y(v) \) were reported when its parent was visited. If there are fewer than \(B/2 \) points to report from \(Q_v \), we can charge the \(O(1) \) I/O cost for visiting \(v \) to the \(\Theta(B) \) points of \(Y(v) \) reported from \(Q_{\text{parent}(v)} \). Thus the total I/O charge for the internal nodes is \(O(\log_B N + t) \). A similar argument applies to the leaves: Only in two leaves (namely, the ones for \(a \) and \(b \)) do we need to load all \(O(B \log_B N) \) points, which takes \(O(\log_B N) \) I/Os. For each remaining leaf \(z \) that we access, we use \(O(1 + T_z/B) \) I/Os if \(T_z < B/2 \), we can charge the \(O(1) \) I/O cost to the \(\Theta(B) \) points in \(Y(z) \) reported from \(Q_{\text{parent}(z)} \).
Lemma 5 Given an external memory priority search tree on \(N = nB \) points, a 3-sided range query satisfied by \(T = tB \) points can be answered in \(O(\log_B N + t) \) I/Os.

3.3.2 Optimal updates—amortized

In order to insert a new point \(p = (x, y) \) into an external priority search tree, we first insert \(x \) into the base tree. This may result in nodes in the base tree being split, which may necessitate a reorganization of the auxiliary structures. We defer the discussion of this reorganization temporarily. To insert the point \(p = (x, y) \) into the appropriate query structure, we initialize node \(v \) to be the root and do the following recursive procedure: Let \(v_i \) be the child of \(v \) whose \(x \)-range includes point \(p \). We identify the (at most) \(B \) points in the \(Y \)-set \(Y(v_i) \), which are stored in \(v \). These points can be identified by performing the (degenerate) 3-sided query defined by the \(x \)-range of \(v_i \) and \(y = -\infty \) on the query structure \(Q_v \). If the number of such points is \(\geq B/2 \) and \(p \) is below all of them, then \(p \) is recursively inserted into \(v_i \). Otherwise, \(p \) joins the \(Y \)-set \(Y(v_i) \) and is inserted into \(v \)'s query structure \(Q_v \). If as a result \(Y(v_i) \) contains more than \(B \) points, the lowest of these points (which can be identified by a query to \(Q_v \)) is deleted from \(Q_v \) (and thus \(Y(v_i) \)) and is recursively inserted into \(v_i \). If \(v \) is a leaf, then \(p \) is inserted into the correct position in \(L_v \). A simple scanning operation suffices to find the proper location for \(p \) and to update the linear list. It is easy to see that after the insertion the tree is a valid external priority search tree.

As mentioned above, auxiliary structures need to be reorganized when a node \(v \) in the base tree splits into nodes \(v' \) and \(v'' \). See Figure 5(a). After the split, one or both of the \(Y \)-sets \(Y(v') \) and \(Y(v'') \) obtained by splitting \(Y(v) \) may contain fewer than \(B/2 \) points. In the worst case we need to promote the topmost \(B/2 \) points from the auxiliary structure of \(v' \) (resp., \(v'' \)) into \(Y(v') \) (resp., \(Y(v'') \)). See Figure 5(b).

Let us consider the process of promoting one point from the auxiliary structure of \(v' \) into the auxiliary structure of \(\text{parent}(v) \). In \(O(1) \) I/Os we find the topmost point \(p' \) stored in \(v' \) by a (degenerate) query to the query structure \(Q_{\text{parent}(v)} \). Then we delete \(p' \) from \(Q_{\text{parent}(v)} \) and insert it into \(Q_{\text{parent}(v)} \). This process may cause the \(Y \)-set of one of the children of \(v' \) to be too small (namely, the \(Y \)-set that formerly contained \(p' \)), in which case we need to promote a point recursively. The promotion of one point may thus involve successive promotions of a point from a node to its parent, along the path from \(v \) down to a leaf. We call such a process a bubble-up operation.

The insertion of the \(x \)-coordinate of a new point \(p \) is performed in the optimal \(O(\log_B N) \) I/Os amortized: According to Lemma 3, the initial insertion of \(x \) can be performed in \(O(\log_B N) \) I/Os and can cause \(O(\log_B N) \) splits. Each split of an internal node \(v \) may cause \(B/2 \) bubble-up operations. By the above discussion and Lemma 1, each bubble-up operation does \(O(1) \) I/Os at each node on the path from \(v \) to a leaf, for a total of \(O(\log_B \text{weight}(v)) \) I/Os. Thus the \(B/2 \) bubble-up operations use \(O(\log_B \text{weight}(v)) \) I/Os. We also need to split the auxiliary structure of \(v \), which is straightforward for leaves and can be done for internal nodes in \(O(B) \) I/Os by Lemma 1. In total a split of node \(v \) can be performed in \(O(\log_B \text{weight}(v)) = O(\text{weight}(v)) \) I/Os. It then follows from Lemma 2 that each of the \(O(\log_B N) \) splits cost \(O(1) \) I/Os amortized.

After inserting \(x \), the algorithm for inserting \(p \) involves traversing at most one root-to-leaf path in the tree, querying and updating \(Q_v \) at each node \(v \) on the path, and a scan through the \(O(\log_B N) \) points in a leaf. It follows from Lemma 1 that this insertion can be performed in \(O(\log_B N) \) I/Os.

Deletion of a point \(p = (x, y) \) is relatively straightforward. We recursively search down the path for the node or leaf containing \(p \). For each node \(v \) on the path, let \(v_i \) be the child whose \(x \)-range includes \(p \). We use the query structure \(Q_v \) to identify the points in the \(Y \)-set \(Y(v_i) \). If \(p \) is one of these points, we delete it from \(Y(v_i) \) (and
thus Q_v), and if as a result $Y(v_i)$ becomes too small, we perform a bubble-up operation. If p is not in $Y(v_i)$, we continue the search recursively in v_i. If the search reaches a leaf z, we simply scan through L_z and delete p. Overall p is deleted in $O(\log_B N)$ I/Os.

After deleting p we should also remove the endpoint x from the base tree in order to guarantee that the height of the structure remains $O(\log_B N)$. However, we can afford to be lazy and leave x in the tree for a while. By the principle of global rebuilding [19], we can leave x in the tree and rebuild the structure completely after $O(N)$ delete operations. It is easy to see that everything can be rebuilt in $O(N \log_B N)$ I/Os, and so a delete costs a total of $O(\log_B N)$ I/Os amortized. Details will appear in the full paper.

Lemma 6 An update can be performed on an external priority search tree in $O(\log_B N)$ I/Os amortized.

3.3.3 Optimal updates—worst-case

The update algorithms in Section 3.3.2 are I/O-optimal in the amortized sense, but have bad worst-case performance. The delete operations can easily be made worst-case efficient using a standard lazy global rebuilding technique [19, 2]. Details will appear in the full paper. However, obtaining a worst-case bound on an insert operation is considerably more complicated. In the previous solution the number of I/Os required to perform an insert can be $\Omega(B(\log_B N)^2)$. There can be $\Omega(\log_B N)$ splits per insert, and each split may require $\Omega(B)$ bubble-up operations, each taking $\Omega(\log_B N)$ I/Os. The tricky problem that remains in order to get a worst case bound is how to schedule the bubble-up operations lazily so that each update only uses $O(\log_B N)$ I/Os, while at the same time maintaining a valid external priority search tree so that the optimal query bound is retained.

The key idea we use to obtain the worst-case bound is that when an internal node v in the weight-balanced base tree gets too heavy, it is not split immediately, but enters a rebuilding phase that extends over the next $O(\text{weight}(v))$ insert operations accessing v. We know from Lemma 2 that v will not have to split again until $\Omega(\text{weight}(v))$ subsequent insert operations has passed through it. The purpose of the rebuilding phase on v is to promote (via bubble-ups) the points needed for constructing the Y-sets $Y(v')$ and $Y(v'')$ and the query structures $Q_{v'}$ and $Q_{v''}$ of the two new nodes v' and v'' that will be created by the split. (We can determine the points to promote for $Y(v')$ and $Y(v'')$ before forming v' and v'' by using a modified form of the 3-sided structure used for Lemma 1.) During the process, we incrementally form the two new query structures, and we incrementally insert the additional points for the two Y-sets into $Q_{\text{parent}(v)}$. When the rebuilding phase is completed, the split can be finalized using $O(1)$ I/Os.

One way of doing the rebuilding within worst-case bounds is to decompose each bubble-up operation into individual I/Os and to do the bubble-ups for v one I/O at a time, doing one I/O each time v is accessed. An insertion thus only takes $O(\log_B N)$ I/Os worst case. However, by doing so, several bubble-up operations may possibly be pending at a certain node, causing its query data structure to be temporarily depleted until points from below are percolated up. At such times, the data structure will not be a valid external priority search tree and queries will not be performed in the optimal number of I/Os.

Below we discuss three approaches for scheduling the bubble-up operations to obtain the optimal worst-case I/O bounds. In all three cases, each time a root-to-leaf path is visited during an insert, one or more of the nodes on the path get complete bubbling-up procedures done on them. Thus there will be no partially done bubble-ups and the optimal query performance is retained. Each insert uses $O(\log_B N)$ I/Os on bubble-up procedures, and it is guaranteed that when a node v gets too heavy it will have $B/2$ bubble-up operations performed on it (if necessary) within $O(\text{weight}(v)/B)$ operations that access v. After the necessary bubble-up operations have been performed, v can be split in $O(1)$ I/Os and we can thus guarantee that the split is accomplished before a new split needs to be initiated. This proves one of our main results. (Details will appear in the full paper).
Theorem 6 A set of \(N\) points can be stored in a data structure using \(O(n)\) disk blocks, so that a 3-sided range query can be answered in \(O(\log_B N + t)\) I/Os worst case, and such that an update can be performed in \(O(\log_B N)\) I/Os worst case.

Heavy leaf nodes method. Our first method for scheduling the bubble-up operations utilizes heavy leaf nodes of size \(\Theta(B \log_B N)\) rather than the normal \(\Theta(B)\).

By Lemmas 4 and 5 this is allowable in an external priority search tree. Our algorithm is extremely simple. We maintain a level counter \(\ell\) for each leaf \(z\), which is initialized to 1 (corresponding to the level of \(z\)'s parent) when \(z\) is created (split). Every time an item is inserted into \(z\), a bubble-up operation is performed on the node at level \(\ell\) above \(z\), and \(\ell\) is incremented by 1. When \(\ell\) reaches the root level, it is reset to 1. Every insertion is performed in \(O(\log_B N)\) I/Os worst case. From the time a leaf \(z\) is created until it splits, \(\Theta(B \log_B N)\) insertions are performed on \(z\), and thus \(\Theta(B)\) bubble-up operations are performed on all the nodes on the path to the root that are in a rebuilding phase when \(z\) is created.

Lemma 7 Let \(v\) be an internal node in an external priority search tree. When \(v\) is in rebuilding mode, it will get \(\Theta(B)\) bubble-up procedures performed on it within \(\Theta(\text{weight}(v)/B + B \log_B N) = \Theta(\text{weight}(v)/B)\) insert operations that visit \(v\).

Proof Sketch: The number of leaves below \(v\) is \(\Theta(\text{weight}(v)/(B \log_B N))\). The worst case occurs when each leaf is accessed enough times to do bubble-up operations for almost all \(v\)'s ancestors, but not for \(v\) itself. Thus \(O((\log_B N)\text{weight}(v)/(B \log_B N)) = O(\text{weight}(v)/B)\) insert operations may be performed below \(v\) without \(v\) having any bubble-up operations performed. However, after \(\ell\) insertions on average every \(O(\log_B N)\) insertions below \(v\) will cause a bubble-up on \(v\).

The proof of Lemma 7 remains valid if the leaf nodes are of size \(\max\{B, \log_B N\}\). We typically have \(B \gg \log_B N\), so for all practical purposes, the maximum is equal to \(B\).

Credit method. Our second method uses the same general principle of doing complete bubble-up operations used in the heavy-leaf method. We show using a credit argument how to allow the proper bubble-up operations and still keep the leaf nodes at the normal size of \(\Theta(B)\) points.

We give a count to each node in the weight-balanced B-tree. The count is 0 when the node is not in rebuilding mode, and it is nonnegative while in rebuilding mode. During an insertion operation, if the node \(v\) on level \(\ell\) on the root-to-leaf path is in rebuilding mode, then we increment \(v\)'s count by 1. We say that \(v\) is eligible for a bubble-up operation when its count is at least \(\ell\).

After the insertion operation, we do the following (complete) bubble-up procedures:

\[
C := 0; \quad \{C\text{ counts I/Os done in bubble-up ops.}\} \\
\ell := 1; \\
\text{while } C < 2\log_B N \text{ do} \\
\quad \text{if the node on level } \ell \text{ is eligible then} \\
\qquad \text{Perform a bubble-up operation for } v \\
\qquad \text{using } \ell \text{ I/Os;} \\
\qquad C := C + \ell; \\
\qquad \text{Reset } v\text{'s count to } 1; \\
\quad \text{endif} \\
\quad \ell := \ell + 1; \quad \{\text{Walk up one level in the tree}\} \\
\text{enddo}
\]

Lemma 8 Let \(v\) be a node on level \(\ell \geq 1\) in the external priority search tree. If \(v\) is in rebuilding mode, then for any \(1 \leq b \leq B\), it will get \(b\) bubble-up procedures done on it within \(4a\ell(\frac{\log_B N}{\ell})^2 + 2\ell = \Theta(\text{weight}(v)/B)\) insert operations that visit \(v\), where \(a = \Theta(B)\) is the branching parameter of the weight-balanced B-tree.

Proof Sketch: First consider the case \(b = 1\). We will show that \(v\) gets a bubble-up operation done on it within \(4a\ell(\frac{\log_B N}{\ell})^2 + \ell\) inserts that access it, assuming that it is in rebuilding mode. The proof is by contradiction. Node \(v\) becomes eligible for a bubble-up operation after \(\ell\) insertion operations that visit it. Once \(v\) becomes eligible, suppose that it does not receive a bubble-up operation during the next \(4a\ell(\frac{\log_B N}{\ell})^2\) accesses. It follows for each of those insertions that there are always eligible nodes below \(v\) on the insertion path (or else \(v\) would have received a bubble-up operation). Thus at least \(2\ell\) worth of I/Os for bubble-up procedures are done during each insertion on \(v\)'s descendants.

When \(v\) becomes eligible, the internal nodes below it (whose number at most \(2a\ell + 4a\ell^{-1} + 4a\ell^{-2} + 4a\ell^{-3} + \cdots + 4a \leq 2a\ell(\frac{\log_B N}{\ell})^2\)) may be in rebuilding mode and may be eligible too. Since each bubble-up operation done on a node resets its count to 0, then after the \(4a\ell(\frac{\log_B N}{\ell})^2\) inserts that visit \(v\), at least \(2a\ell(\frac{\log_B N}{\ell})^2\) of the inserts do complete bubble-ups operations exclusively on nodes that have already received complete bubble-ups while \(v\) was eligible. Each insert operation may add 1 to a node’s count, which allows the node to do one future I/O of work for a bubble-up procedure. Thus the total added allowance to \(v\)'s descendents per insertion is \(\ell - 1\) I/Os. On the other hand, at least \(2\ell\) I/Os of bubble-ups are done per insert while \(v\) is eligible. The \(2a\ell(\frac{\log_B N}{\ell})^2\) inserts that do bubble-ups exclusively on nodes that have received previous bubble-ups must therefore reduce the nodes’ allowances by at least \(2a\ell(\frac{\log_B N}{\ell})^2(2\ell) = 4a\ell(\frac{\log_B N}{\ell})\ell\). Since the allowances for those nodes are built up only during \(v\)'s eligible period, the allowances total at most \(4a\ell(\frac{\log_B N}{\ell})^2((\ell - 1))\), and thus some of them must become negative, which is impossible.

The argument for \(b > 1\) is similar. After each bubble-up it receives, \(v\) needs to wait \(\ell\) insertions before it be-
comes eligible again, during which time its descendants may accumulate a total allowance of ℓ per insert. □

Child split method. Our third method uses generic properties of B-trees to schedule the bubble-up operations. Let us consider a particular insertion. Let h be the height of the tree, and let v_0, v_1, \ldots, v_h be the nodes of the path from the leaf where the new point is inserted up to the root; that is, v_0 is the leaf itself, and v_h is the root. We consider only the case where the leaf v_0 splits, but the root v_h does not split. If this is not the case, no bubble-ups are performed for this insertion.

By our assumption that the root does not split, we conclude the there exists some k, for $0 < k < h$, such that all the nodes v_0, \ldots, v_{k-1} split, but none of the nodes v_k, \ldots, v_h split. In this case, node v_k gets (up to) β bubble-up operations done on it. We call node v_k the designated node of this insertion. The following property is trivial:

Lemma 9 For any insertion where a leaf splits but the root does not split, the number of children of the designated node increases by 1. All other nodes of the tree either split or remain unchanged.

This proposition implies that the number of children of a node increases as a result of an insertion if and only if the node is the designated node of that insertion.

We now show that $\beta = O(1)$ is sufficient to ensure that every internal node v_k will receive $O(B)$ bubble-ups during its rebuilding phase. Let ℓ_1 be the number of children that v_k has when it enters its rebuilding phase and let ℓ_2 be the number of children v_k has when it is ready to actually split. By Lemma 9, v_k must be the designated node for exactly $\ell_2 - \ell_1$ insertions during the rebuilding phase. Thus, it receives $\beta(\ell_2 - \ell_1)$ bubble-up operations during rebuilding. Since $\ell_2 - \ell_1 = \Omega(B)$, we can choose β to be a sufficiently large constant to guarantee that v_k gets B bubble-up done on it in during its rebuilding phase.

4 Dynamic 4-sided range query data structure

Using the optimal structure for 3-sided range searching that we just developed, we show in this section how to augment the approach in Section 2.2.2 with the appropriate search structures to obtain a optimal structure for general 4-sided range queries.

Our structure for 4-sided queries consists of a base tree with fan-out $\rho = \log_B N$ over the x-coordinates of the N points. An x-range is associated with each node v and this is subdivided by v's children v_1, v_2, \ldots, v_p. We store all the points that are in the x-range of v in four auxiliary data structures associated with v. As in Section 2.2.2, two of the structures are for answering 3-sided queries: one for answering queries with the opening to the left and one for queries with the opening to the right. We also store the points in a linear list sorted by y-coordinate. For the fourth structure, we imagine linking together, for each child v_i, for $1 \leq i \leq \rho$, the points in the x-range of v_i in y-order, producing a polygonal line monotone with respect to the y-axis. We project the segments produced in this way onto the y-axis and store them, together with all the segments produced in the same way for the other siblings, in the linear space external interval tree developed in [2]. Each point in the x-range of v is thus stored in four linear-space auxiliary data structures, so the auxiliary structures for v occupy $O(\text{weight}(v)/B)$ disk blocks. Since the tree has height $O(\log_B n) = O((\log n)/\log\log_B N)$ the whole structure occupies a total of $O(n(\log n)/\log\log_B N)$ disk blocks.

To answer a 4-sided query $q = (a, b, c, d)$, we use a procedure similar in spirit to that of Section 2.2.2. We first find the lowest node v in the base tree for which the x-range of v completely contains the x-interval $[a, b]$ of the query. Consider the case where a lies in the x-range of v_i and b lies in the x-range of v_j. The query q is naturally decomposed into three parts consisting of a part in v_i, a part in v_j, and a part completely spanning nodes v_k, for $i < k < j$. The points contained in the first part can be found in $O(\log_B N + t) 1/0$s using the 3-sided structures corresponding to v_i and v_j. To find the points in the third part, we query the interval tree associated with v_i with the y-value c. This gives us the ρ segments in the structure containing c, and thus the bottommost point contained in the query for each of the nodes $v_{i+1}, v_{i+2}, \ldots, v_{j-1}$. We assume that each segment in the interval tree for v has a link to a corresponding endpoint in the linear list of the appropriate child of v. Following these links, we can traverse the $j - i - 1$ sorted lists for $v_{i+1}, v_{i+2}, \ldots, v_{j-1}$ and output the remaining points using $O(\rho + t) = O(\log_B N + t)$ 1/0s.

To do an update, we need to perform $O(1)$ updates on each of the $O(\log_B n) = O((\log n)/\log\log_B N)$ levels of the tree. Each of these updates take $O(\log_B N)$ 1/0s. We also need to update the base tree. If we implement the base tree using a weight-balanced B-tree and apply the techniques of Section 3.3, we can show that the updates can be accomplished in $O((\log_B N)(\log n)/\log\log_B N) 1/0s$. Additional details will appear in the full paper.

Theorem 7 A set of $N = nB$ points can be stored in a data structure using $O(n(\log n)/\log\log_B N)$ disk blocks, so that a 4-sided range query satisfied by $T = tB$ points can be answered in $O(\log_B N + t)$ 1/0s worst case, and such that updates can be performed in $O((\log_B N)(\log n)/\log\log_B N) 1/0s$.

5 Conclusions

We have shown how to perform 3-sided planar (two-dimensional) orthogonal range queries in $1/O$-optimal worst-case bounds on query, update, and disk space
by means of an external version of the priority search tree. Our approach can be extended to handle (general) 4-sided range queries with optimal query and space bounds.

In practice, the amortized data structures we develop or a modification of the static data structures that they are based upon are likely to be most practical. It would be interesting to compare our methods with other methods currently in use. Some initial work in that regard is planned using the TPJE system [27].

There are several interesting range searching problems in external memory that remain open, such as higher-dimensional range searching and non-orthogonal queries. Some recent work has been done on I/O-efficient three-dimensional range searching and half-space range searching [1, 28, 29].

References

